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1. Introduction 
The following Hardware Architecture Specification (HAS) outlines the design process for an 

addressable RGB controller. RGB LED’s can add novel lighting affects to offices, labs, and of course 

gaming setups. This widget is designed to drive strips of WS2812 IC’s; however, similar IC’s can be 

driven with minor firmware tweaks. A colleague of mine introduced me to this IC and pointed out its 

interesting pulse width modulation (PWM) based single line communication protocol. I say single 

line somewhat loosely here, we still need a GND reference. Interested in this protocol, and the 

potential addition of RGB to my desk, I purchased a strip of WS2812’s and began working through 

the following design process. 

2. Design Goals 
The goals for this project are minimal; be able to drive an ambiguous number of LEDs in one of 

several predefined patterns/colors. The LEDs don’t need to be individually addressed; the entire 

strip may follow a single pattern if desired. Another personal goal is to experiment with crystal 

oscillators since I’ve somehow avoided these in my designs until now. 

Cost and dimensional constraints are not considered in this design due to the simplicity of the 

widget. 

The final widget should: 

• Control any number of WS2812’s (within reason <200 etc.) 

• Include a crystal oscillator 

3. Research  
This section covers some basic research for the blocks of this widget. Research was conducted for 

the RGB IC, and crystal oscillator circuits. 

3.1. Addressable RGB LED’s 
There are several popular RGB LEDs on the market such as the, WS2812 sometimes referred to 

as NeoPixel, WS2813, PI55TBTPRPGPB, and SK6812. All datasheets are nearly carbon copies of 

one another with minor timing differences. This needs to be kept in mind while working on the 

firmware for the project. Although this design will be based on the WS2812, it would be nice to 

accommodate other variants. 

The WS2812 displays a color based on 3x 8bit values, one for each primary color. Resulting in 

2^24 or 16777216 different color values. I’ll refer to this 24-bit value as a packet. The IC’s are 

cascaded and fed a stream of packets representing the color data for each LED along the chain. 

As the packets pass through the first IC, the first packet to arrive is received and “removed” 

from the bitstream and interpreted by that IC. All subsequent packets are passed along to the 

next IC. This is illustrated in Figure 1. 

https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://www.amazon.ca/gp/product/B07WD6L31K/ref=ppx_yo_dt_b_asin_title_o03_s00?ie=UTF8&th=1
http://cdn.sparkfun.com/datasheets/Components/LED/WS2812.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-neopixel-uberguide.pdf
https://media.digikey.com/pdf/Data%20Sheets/Seeed%20Technology/WS2813B_Ver.V5_10-20-19.pdf
https://www.inolux-corp.com/datasheet/SMDLED/Addressable%20LED/IN-PI55TBT(X)R(X)G(X)B_v1.1.pdf
https://cdn-shop.adafruit.com/product-files/1138/SK6812+LED+datasheet+.pdf


 

Figure 1. Data Transmission Method 

The data is defined as a 1 or 0 based on the high and low times of each cycle. This is best shown in 

the graphic of Figure 2, using the timings presented in Table 1 as reference. Reset is used to 

end/start a new bitstream. 

 

Figure 2. Data Encoding 



Table 1. Data Encoding Times 

T0H 0 code, high voltage 0.35us ±150ns 

T1H 1 code, high voltage 0.7us ±150ns 

T0L 0 code, low voltage 0.8us ±150ns 

T1L 1 code, low voltage 0.6us ±150ns 

RESET low voltage >50us  

 

3.2. Crystal Oscillator 
The following section explains the design process for a crystal oscillator, and closely follows the 

outline provided by TI’s application note. 

A Pierce Oscillator will be used as the clock source, shown in Figure 3. Note that an additional 

resistor is sometimes included to isolate C2 from the output of the CMOS inverter. I will be using 

a 20MHz crystal (datasheet), and unbuffered CMOS inverter (datasheet). 

 

Figure 3. Pierce Oscillator Using CMOS Inverter 

𝐶1 and 𝐶2 should be chosen so that their series capacitance (𝐶 =
𝐶1∗𝐶2

𝐶1+𝐶2
), is approximately 

equivalent to the load capacitance specified by the crystal manufacturer. For this 20MHz crystal 

the load capacitance is 20pF. Choosing 𝐶1 = 𝐶2, the recommended value is 40pF (eq.1). 

However, this value does not consider the capacitance of the PCB, or the input/output 

capacitance of the inverter. Depending on the board 30pF may be a more stable option (or I 

suppose the correct term would be less stable since this is an oscillator). 

𝐶 =
𝐶1∗𝐶2

𝐶1+𝐶2
 =

𝐶1 

2
=> 𝐶1 = 𝐶2 = 2 ∗ 20𝑝𝐹 = 40𝑝𝐹                                                                 (𝑒𝑞. 1)  

The purpose of 𝑅𝐹 is to provide feedback for the inverter. It’s typically 1-10MΩ. To calculate its 

recommended value, we need values for; the capacitance of the leads and electrodes (𝐶0), the 

load capacitance (𝐶𝐿), the resistance at series resonance (𝑅𝜔), and lastly the open loop gain of 

the inverter (α). For this widget the calculation resulted in a recommended feedback resistor of 

29kΩ (eq.2), this seems low based on other literature, so I will ignore this result and use 2.2MΩ 

based on the inverter datasheet. (I think this error is due to the poor open loop gain of 

unbuffered inverters, I’m suspicious this equation wasn’t intended to be used in such instances) 

https://www.ti.com/lit/an/szza043/szza043.pdf?ts=1642196692848&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.digikey.ca/en/products/detail/fox-electronics/FC4SDCBMF20-0-T1/1024610
https://www.ti.com/lit/ds/symlink/sn74lvc1gu04.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1642210316902&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Fsn74lvc1gu04
https://www.ti.com/lit/ds/symlink/sn74lvc1gu04.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1642210316902&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Fsn74lvc1gu04


𝛼 = 20𝑑𝐵𝑉 = 10𝑉/𝑉  

𝑅𝐹 = (
1

𝑅∗𝜔2∗(𝐶0+𝐶𝐿)2) ∗ 𝛼 = (
1

30∗(2𝜋∗20∗106)2∗(7∗10−12+20∗10−12)2) ∗ 10 =  29𝑘Ω                (eq. 2)  

Another resistor (𝑅𝑆) will be added to isolate C2 and the output of the inverter. Choosing (𝑅𝑆 ≈

𝑋𝐶2) will attenuate the signal by 50% at the resonant frequency, hence it should dramatically 

reduce the overshoot at the output. 𝑅𝑠 will be 470Ω based on (eq.3). 

𝑅𝑠 = 𝑅2 =
1

2𝜋∗20∗106∗40∗10−12 = 398Ω                                                                                         (eq. 3)  

The final circuit is shown in Figure 4. Circuit validation is presented in section 7.1.  

 

Figure 4. Finalized Pierce Oscillator Circuit 

4. Component Selection 
Component selection for this widget was primarily driven by my spare parts drawer. Where possible, 

and unless otherwise stated, components will use 0603 footprints. All bypass capacitors will be X5R 

or better and rated for at least 12V. A single 25V, 220uF electrolytic bulk capacitor is provided at the 

power input, along with a TVS diode for transient suppression. The PCB will be powered with a 5V 

wall adapter (note that the maximum operating voltage of the MCU is 5.5V so it might be a good 

idea to do a sanity check of your wall adapter before use); the power rating will be determined by 

the length of RGB strip connected to the widgets output. Since each IC can draw up to 60mA (max 

20mA per emitter color), the maximum current draw of the widget at 5V is shown in (eq.4), where 

‘n’ is the number of WS2812’s being driven.  

𝐴𝑝𝑝𝑟𝑜𝑥. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑅𝑎𝑡𝑖𝑛𝑔 @5𝑉 = 0.51 + 𝑛 ∗ 0.06𝐴                                                 (𝑒𝑞. 4)    



𝐼 = 0.51 + 300 ∗ 0.06 = 18.5𝐴            (𝑛 = 300)  

Note 1 – budgeted 500mA for the rest of the system and to provide overhead 

An entire strip may contain up to ~300 LEDs. Such a system could theoretically require up to 18.5A if 

all elements were at their maximum brightness. Since this is an unrealistic requirement either (a) 

the maximum allowable LED strip must be reduced or (b) the color displayed must be well below its 

maximum brightness. This is investigated in section 8 and was resolved. (TLDR: with 100 LEDs max 

current is about 2A, and use 𝑰 = 𝟎. 𝟎𝟑𝟓𝒏 + 𝟎. 𝟎𝟐 [𝑨] for PSU selection) 

An Attiny13A will be at the heart of this widget. If the MCU is ran at 20MHz via an external clock, we 

should be able to manage the timing constraints of Table 1 via “bit-banging”. Alternatively, there is a 

configurable PWM generator that might come in handy for the single line protocol. The main 

constricting factor is the 1KB of flash, 64B of EEPROM and 64B of SRAM. There are existing libraries 

that would theoretically work with this MCU; however, these libraries are too large and would 

require substantial modification to meet this micro’s memory constraint. 

For the crystal oscillator circuit an unbuffered inverter, will drive the quartz-crystal oscillation, and 

the signal will be cleaned up by a buffered Schmitt trigger inverter. So long as the components are 

fast enough, any jelly-bean inverter should do the job. This widget will use an SN74LVC1GU04 as the 

unbuffered inverter and a MC74VHC1G14 for the buffered inverter. 

5. Schematic 
The final schematic is shown in Figure 5. Unused pins on the MCU were connected to an external dip 

switch to allow for user configuration. The SPI bus is routed to pads for side mounting 2.54mm male 

headers (see section 6), these headers can plug into an Arduino Uno for programming (pins 13->10). 

Note that when programming the ATTINY all the dip switch inputs must be off, otherwise some of 

the bus lines will be pulled to ground. 

https://www.ti.com/lit/ds/symlink/sn74lvc1gu04.pdf?ts=1644774875044&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.onsemi.com/pdf/datasheet/mc74vhc1g14-d.pdf


 

Figure 5. Final Schematic 

6. PCB Layout 
This widget uses a 2-layer board. All traces and components, aside from the tester circuit, and 

programming pads, were kept on the top layer. A ground plane was added to the bottom layer, and 

the remaining area of the top layer was poured for Vcc. The resulting PCB is shown in Figure 6.  

 

Figure 6. PCB Layers 



The 3D model for the layout is presented in Figure 7.  

 

Figure 7. PCB 3D Model 

7. Widget Validation 
Both the crystal oscillator and the communication protocol need to be tested before firmware 

development can begin. The crystal oscillator is validated in section 7.1, and the protocol in section 

7.2. 

7.1.  External Clock Validation 
The clock source works as expected. At the oscillator is a stable 20MHz cosine with a peak-to-

peak amplitude of 3.72V (Figure 8), and after the first unbuffered inverted, the signal is 

amplified to a square wave with 5ns rise and fall time (Figure 9). After the buffered inverter the 

signal is tightened up a bit further, and a small amount of overshoot is introduced (Figure 10). 

 

Figure 8. Crystal Oscillator - Stage 1 



 

Figure 9. Crystal Oscillator - Stage 2 

 

Figure 10. Crystal Oscillator - Stage 3 

7.2.  Communication Protocol Validation 
After confirming the clock source was stable and configuring my IDE, I was able to program the 

ATTINY13a. To get started I wanted to understand what I was working with. If I just toggle the 

pin, I’m able to get ~50ns pulse widths. This makes sense since the clock is 20MHz = 50ns period. 



 

Figure 11. ATTINY13a Pin Toggle 

To extend the pulse widths of each toggle I inserted _asm(“nop”) commands. This is an 

assembly command telling the MCU to perform no operation. The toggle command will need to 

be padded with 7/8, and 15/16 “nop” to achieve the timings in Table 1. A hardcoded 0 is 

presented in Figure 12.  

 

Figure 12. WS2812B Encoded 0 

The hardcoded 1 and 0 were then moved into functions and called 24 times to test a single 

WS2812 LED. Note that the timings had to be tweaked to account for the overhead of entering 

and exiting the function. The result of this test can be seen in Figure 13.  



 

Figure 13. Communication Protocol Testing 

Testing the reset command, it looks like the IC follows its datasheet closely. It won’t reset below 

a 50us hold time. In the capture shown in Figure 14 the signal was held low for approximately 

50us, but the LED did not update (cursors were likely a bit offset here). Increasing the delay to 

55us and the IC worked as expected. The datasheets were somewhat unclear what needs to be 

done at the end of the bitstream. The extended on-time in this capture, was later deemed to be 

unnecessary. 

 

Figure 14. Bitstream Scope Capture 

8. Power Dissipation 
After developing the firmware, the following power consumption measurements were recorded.  

Driving 5, max brightness, LED’s at 5V, required 950mW (190mA), and with all LEDs off its about 

100mW (20mA). This corresponds to approximately 175mW (35mA) per LED. Note that these are 

just ballpark values since the PSU used has limited accuracy and precision. See Figure 15. 



 

Figure 15. Power Requirements of 5 LEDs 

After getting a general idea of the power requirements a string of 100 WS2812s was tested 

resulting in 15.4W, so about 153mW per LED (adjusted for quiescent). For power supply 

recommendations I will go with the larger value, 175mW per LED + 100mW of overhead. The 

final power supply recommendation is presented below. 

𝑰 = 𝟎. 𝟎𝟑𝟓𝒏 + 𝟎. 𝟎𝟐 [𝑨]     //5V supply current rating for ‘n’ LEDs 

Appendix A – Code Tweaks 
The code for this widget should be attached in a nearby document folder. There are several defined 

values that can be tweaked to alter the widgets operation (Figure 16). 

• NUM_LED: The maximum number of LED’s on the string. This is the number of packets that the 

MCU will attempt to send down the line. 

• MAX_BRIGHTNESS: Used by the RGB function to define the brightness ceiling. 

• MIN_BRIGHTNESS: Used by the RGB function to define the brightness floor. 

• RGB_SEED_1: Changing this value will alter the RGB strobing pattern. 

• CUSTOM_n: These are default color codes that the user can configure.   

 

Figure 16. Code Constants 



If you want to alter this code for different RGB IC’s, you’ll need to alter the number of _asm(“nop”) 

commands for each pulse. Each instruction adds a single clock cycle (so 50ns) to the execution time. 

Note that the low time on bit 1 is done externally, so is somewhat capped to 450ns.  

 

Figure 17. Send_Bit Function 

Lastly the reset command is primarily configured by a delay_clk(300) at line 79. If your LED defines a 

different reset timing you may need to tweak this value. Currently my code pulls the bus low for about 

68us. 

 


