

WS2812 Controller

HARDWARE ARCHITECTURE
SPECIFICATION

Developed By:

Jesse Farrell

Contact:

Jessefarrell92@gmail.com

Table of Contents
1. Introduction .. 4

2. Design Goals .. 4

3. Research .. 4

3.1. Addressable RGB LED’s ... 4

3.2. Crystal Oscillator ... 6

4. Component Selection .. 7

5. Schematic .. 8

6. PCB Layout .. 9

7. Widget Validation ... 10

7.1. External Clock Validation .. 10

7.2. Communication Protocol Validation ... 11

8. Power Dissipation ... 13

Appendix A – Code Tweaks ... 14

Table of Figures
Figure 1. Data Transmission Method .. 5

Figure 2. Data Encoding .. 5

Figure 3. Pierce Oscillator Using CMOS Inverter ... 6

Figure 4. Finalized Pierce Oscillator Circuit ... 7

Figure 5. Final Schematic .. 9

Figure 6. PCB Layers .. 9

Figure 7. PCB 3D Model .. 10

Figure 8. Crystal Oscillator - Stage 1 ... 10

Figure 9. Crystal Oscillator - Stage 2 ... 11

Figure 10. Crystal Oscillator - Stage 3 ... 11

Figure 11. ATTINY13a Pin Toggle .. 12

Figure 12. WS2812B Encoded 0 .. 12

Figure 13. Communication Protocol Testing ... 13

Figure 14. Bitstream Scope Capture ... 13

Figure 15. Power Requirements of 5 LEDs .. 14

Figure 17. Code Constants .. 14

Figure 18. Send_Bit Function .. 15

Revision History
Revision Release Date Comments

Rev 1.0 Jan. 18. 2022 First release with basic project overview
Missing validation and software development

Rev 1.1 Feb. 13. 2022 Updated PCB layout
Added final validation section
Added programming comments to Appendix A
Grammar fixing

Rev 1.2 Mar. 29. 2022 Final Grammar fixing

1. Introduction
The following Hardware Architecture Specification (HAS) outlines the design process for an

addressable RGB controller. RGB LED’s can add novel lighting affects to offices, labs, and of course

gaming setups. This widget is designed to drive strips of WS2812 IC’s; however, similar IC’s can be

driven with minor firmware tweaks. A colleague of mine introduced me to this IC and pointed out its

interesting pulse width modulation (PWM) based single line communication protocol. I say single

line somewhat loosely here, we still need a GND reference. Interested in this protocol, and the

potential addition of RGB to my desk, I purchased a strip of WS2812’s and began working through

the following design process.

2. Design Goals
The goals for this project are minimal; be able to drive an ambiguous number of LEDs in one of

several predefined patterns/colors. The LEDs don’t need to be individually addressed; the entire

strip may follow a single pattern if desired. Another personal goal is to experiment with crystal

oscillators since I’ve somehow avoided these in my designs until now.

Cost and dimensional constraints are not considered in this design due to the simplicity of the

widget.

The final widget should:

• Control any number of WS2812’s (within reason <200 etc.)

• Include a crystal oscillator

3. Research
This section covers some basic research for the blocks of this widget. Research was conducted for

the RGB IC, and crystal oscillator circuits.

3.1. Addressable RGB LED’s
There are several popular RGB LEDs on the market such as the, WS2812 sometimes referred to

as NeoPixel, WS2813, PI55TBTPRPGPB, and SK6812. All datasheets are nearly carbon copies of

one another with minor timing differences. This needs to be kept in mind while working on the

firmware for the project. Although this design will be based on the WS2812, it would be nice to

accommodate other variants.

The WS2812 displays a color based on 3x 8bit values, one for each primary color. Resulting in

2^24 or 16777216 different color values. I’ll refer to this 24-bit value as a packet. The IC’s are

cascaded and fed a stream of packets representing the color data for each LED along the chain.

As the packets pass through the first IC, the first packet to arrive is received and “removed”

from the bitstream and interpreted by that IC. All subsequent packets are passed along to the

next IC. This is illustrated in Figure 1.

https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://www.amazon.ca/gp/product/B07WD6L31K/ref=ppx_yo_dt_b_asin_title_o03_s00?ie=UTF8&th=1
http://cdn.sparkfun.com/datasheets/Components/LED/WS2812.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-neopixel-uberguide.pdf
https://media.digikey.com/pdf/Data%20Sheets/Seeed%20Technology/WS2813B_Ver.V5_10-20-19.pdf
https://www.inolux-corp.com/datasheet/SMDLED/Addressable%20LED/IN-PI55TBT(X)R(X)G(X)B_v1.1.pdf
https://cdn-shop.adafruit.com/product-files/1138/SK6812+LED+datasheet+.pdf

Figure 1. Data Transmission Method

The data is defined as a 1 or 0 based on the high and low times of each cycle. This is best shown in

the graphic of Figure 2, using the timings presented in Table 1 as reference. Reset is used to

end/start a new bitstream.

Figure 2. Data Encoding

Table 1. Data Encoding Times

T0H 0 code, high voltage 0.35us ±150ns

T1H 1 code, high voltage 0.7us ±150ns

T0L 0 code, low voltage 0.8us ±150ns

T1L 1 code, low voltage 0.6us ±150ns

RESET low voltage >50us

3.2. Crystal Oscillator
The following section explains the design process for a crystal oscillator, and closely follows the

outline provided by TI’s application note.

A Pierce Oscillator will be used as the clock source, shown in Figure 3. Note that an additional

resistor is sometimes included to isolate C2 from the output of the CMOS inverter. I will be using

a 20MHz crystal (datasheet), and unbuffered CMOS inverter (datasheet).

Figure 3. Pierce Oscillator Using CMOS Inverter

𝐶1 and 𝐶2 should be chosen so that their series capacitance (𝐶 =
𝐶1∗𝐶2

𝐶1+𝐶2
), is approximately

equivalent to the load capacitance specified by the crystal manufacturer. For this 20MHz crystal

the load capacitance is 20pF. Choosing 𝐶1 = 𝐶2, the recommended value is 40pF (eq.1).

However, this value does not consider the capacitance of the PCB, or the input/output

capacitance of the inverter. Depending on the board 30pF may be a more stable option (or I

suppose the correct term would be less stable since this is an oscillator).

𝐶 =
𝐶1∗𝐶2

𝐶1+𝐶2
 =

𝐶1

2
=> 𝐶1 = 𝐶2 = 2 ∗ 20𝑝𝐹 = 40𝑝𝐹 (𝑒𝑞. 1)

The purpose of 𝑅𝐹 is to provide feedback for the inverter. It’s typically 1-10MΩ. To calculate its

recommended value, we need values for; the capacitance of the leads and electrodes (𝐶0), the

load capacitance (𝐶𝐿), the resistance at series resonance (𝑅𝜔), and lastly the open loop gain of

the inverter (α). For this widget the calculation resulted in a recommended feedback resistor of

29kΩ (eq.2), this seems low based on other literature, so I will ignore this result and use 2.2MΩ

based on the inverter datasheet. (I think this error is due to the poor open loop gain of

unbuffered inverters, I’m suspicious this equation wasn’t intended to be used in such instances)

https://www.ti.com/lit/an/szza043/szza043.pdf?ts=1642196692848&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.digikey.ca/en/products/detail/fox-electronics/FC4SDCBMF20-0-T1/1024610
https://www.ti.com/lit/ds/symlink/sn74lvc1gu04.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1642210316902&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Fsn74lvc1gu04
https://www.ti.com/lit/ds/symlink/sn74lvc1gu04.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1642210316902&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Fsn74lvc1gu04

𝛼 = 20𝑑𝐵𝑉 = 10𝑉/𝑉

𝑅𝐹 = (
1

𝑅∗𝜔2∗(𝐶0+𝐶𝐿)2) ∗ 𝛼 = (
1

30∗(2𝜋∗20∗106)2∗(7∗10−12+20∗10−12)2) ∗ 10 = 29𝑘Ω (eq. 2)

Another resistor (𝑅𝑆) will be added to isolate C2 and the output of the inverter. Choosing (𝑅𝑆 ≈

𝑋𝐶2) will attenuate the signal by 50% at the resonant frequency, hence it should dramatically

reduce the overshoot at the output. 𝑅𝑠 will be 470Ω based on (eq.3).

𝑅𝑠 = 𝑅2 =
1

2𝜋∗20∗106∗40∗10−12 = 398Ω (eq. 3)

The final circuit is shown in Figure 4. Circuit validation is presented in section 7.1.

Figure 4. Finalized Pierce Oscillator Circuit

4. Component Selection
Component selection for this widget was primarily driven by my spare parts drawer. Where possible,

and unless otherwise stated, components will use 0603 footprints. All bypass capacitors will be X5R

or better and rated for at least 12V. A single 25V, 220uF electrolytic bulk capacitor is provided at the

power input, along with a TVS diode for transient suppression. The PCB will be powered with a 5V

wall adapter (note that the maximum operating voltage of the MCU is 5.5V so it might be a good

idea to do a sanity check of your wall adapter before use); the power rating will be determined by

the length of RGB strip connected to the widgets output. Since each IC can draw up to 60mA (max

20mA per emitter color), the maximum current draw of the widget at 5V is shown in (eq.4), where

‘n’ is the number of WS2812’s being driven.

𝐴𝑝𝑝𝑟𝑜𝑥. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑅𝑎𝑡𝑖𝑛𝑔 @5𝑉 = 0.51 + 𝑛 ∗ 0.06𝐴 (𝑒𝑞. 4)

𝐼 = 0.51 + 300 ∗ 0.06 = 18.5𝐴 (𝑛 = 300)

Note 1 – budgeted 500mA for the rest of the system and to provide overhead

An entire strip may contain up to ~300 LEDs. Such a system could theoretically require up to 18.5A if

all elements were at their maximum brightness. Since this is an unrealistic requirement either (a)

the maximum allowable LED strip must be reduced or (b) the color displayed must be well below its

maximum brightness. This is investigated in section 8 and was resolved. (TLDR: with 100 LEDs max

current is about 2A, and use 𝑰 = 𝟎. 𝟎𝟑𝟓𝒏 + 𝟎. 𝟎𝟐 [𝑨] for PSU selection)

An Attiny13A will be at the heart of this widget. If the MCU is ran at 20MHz via an external clock, we

should be able to manage the timing constraints of Table 1 via “bit-banging”. Alternatively, there is a

configurable PWM generator that might come in handy for the single line protocol. The main

constricting factor is the 1KB of flash, 64B of EEPROM and 64B of SRAM. There are existing libraries

that would theoretically work with this MCU; however, these libraries are too large and would

require substantial modification to meet this micro’s memory constraint.

For the crystal oscillator circuit an unbuffered inverter, will drive the quartz-crystal oscillation, and

the signal will be cleaned up by a buffered Schmitt trigger inverter. So long as the components are

fast enough, any jelly-bean inverter should do the job. This widget will use an SN74LVC1GU04 as the

unbuffered inverter and a MC74VHC1G14 for the buffered inverter.

5. Schematic
The final schematic is shown in Figure 5. Unused pins on the MCU were connected to an external dip

switch to allow for user configuration. The SPI bus is routed to pads for side mounting 2.54mm male

headers (see section 6), these headers can plug into an Arduino Uno for programming (pins 13->10).

Note that when programming the ATTINY all the dip switch inputs must be off, otherwise some of

the bus lines will be pulled to ground.

https://www.ti.com/lit/ds/symlink/sn74lvc1gu04.pdf?ts=1644774875044&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.onsemi.com/pdf/datasheet/mc74vhc1g14-d.pdf

Figure 5. Final Schematic

6. PCB Layout
This widget uses a 2-layer board. All traces and components, aside from the tester circuit, and

programming pads, were kept on the top layer. A ground plane was added to the bottom layer, and

the remaining area of the top layer was poured for Vcc. The resulting PCB is shown in Figure 6.

Figure 6. PCB Layers

The 3D model for the layout is presented in Figure 7.

Figure 7. PCB 3D Model

7. Widget Validation
Both the crystal oscillator and the communication protocol need to be tested before firmware

development can begin. The crystal oscillator is validated in section 7.1, and the protocol in section

7.2.

7.1. External Clock Validation
The clock source works as expected. At the oscillator is a stable 20MHz cosine with a peak-to-

peak amplitude of 3.72V (Figure 8), and after the first unbuffered inverted, the signal is

amplified to a square wave with 5ns rise and fall time (Figure 9). After the buffered inverter the

signal is tightened up a bit further, and a small amount of overshoot is introduced (Figure 10).

Figure 8. Crystal Oscillator - Stage 1

Figure 9. Crystal Oscillator - Stage 2

Figure 10. Crystal Oscillator - Stage 3

7.2. Communication Protocol Validation
After confirming the clock source was stable and configuring my IDE, I was able to program the

ATTINY13a. To get started I wanted to understand what I was working with. If I just toggle the

pin, I’m able to get ~50ns pulse widths. This makes sense since the clock is 20MHz = 50ns period.

Figure 11. ATTINY13a Pin Toggle

To extend the pulse widths of each toggle I inserted _asm(“nop”) commands. This is an

assembly command telling the MCU to perform no operation. The toggle command will need to

be padded with 7/8, and 15/16 “nop” to achieve the timings in Table 1. A hardcoded 0 is

presented in Figure 12.

Figure 12. WS2812B Encoded 0

The hardcoded 1 and 0 were then moved into functions and called 24 times to test a single

WS2812 LED. Note that the timings had to be tweaked to account for the overhead of entering

and exiting the function. The result of this test can be seen in Figure 13.

Figure 13. Communication Protocol Testing

Testing the reset command, it looks like the IC follows its datasheet closely. It won’t reset below

a 50us hold time. In the capture shown in Figure 14 the signal was held low for approximately

50us, but the LED did not update (cursors were likely a bit offset here). Increasing the delay to

55us and the IC worked as expected. The datasheets were somewhat unclear what needs to be

done at the end of the bitstream. The extended on-time in this capture, was later deemed to be

unnecessary.

Figure 14. Bitstream Scope Capture

8. Power Dissipation
After developing the firmware, the following power consumption measurements were recorded.

Driving 5, max brightness, LED’s at 5V, required 950mW (190mA), and with all LEDs off its about

100mW (20mA). This corresponds to approximately 175mW (35mA) per LED. Note that these are

just ballpark values since the PSU used has limited accuracy and precision. See Figure 15.

Figure 15. Power Requirements of 5 LEDs

After getting a general idea of the power requirements a string of 100 WS2812s was tested

resulting in 15.4W, so about 153mW per LED (adjusted for quiescent). For power supply

recommendations I will go with the larger value, 175mW per LED + 100mW of overhead. The

final power supply recommendation is presented below.

𝑰 = 𝟎. 𝟎𝟑𝟓𝒏 + 𝟎. 𝟎𝟐 [𝑨] //5V supply current rating for ‘n’ LEDs

Appendix A – Code Tweaks
The code for this widget should be attached in a nearby document folder. There are several defined

values that can be tweaked to alter the widgets operation (Figure 16).

• NUM_LED: The maximum number of LED’s on the string. This is the number of packets that the

MCU will attempt to send down the line.

• MAX_BRIGHTNESS: Used by the RGB function to define the brightness ceiling.

• MIN_BRIGHTNESS: Used by the RGB function to define the brightness floor.

• RGB_SEED_1: Changing this value will alter the RGB strobing pattern.

• CUSTOM_n: These are default color codes that the user can configure.

Figure 16. Code Constants

If you want to alter this code for different RGB IC’s, you’ll need to alter the number of _asm(“nop”)

commands for each pulse. Each instruction adds a single clock cycle (so 50ns) to the execution time.

Note that the low time on bit 1 is done externally, so is somewhat capped to 450ns.

Figure 17. Send_Bit Function

Lastly the reset command is primarily configured by a delay_clk(300) at line 79. If your LED defines a

different reset timing you may need to tweak this value. Currently my code pulls the bus low for about

68us.

